#### Galaxy Cluster Mass with Deep Learning and Cosmological Hydrodynamic Simulation

Ziang Yan

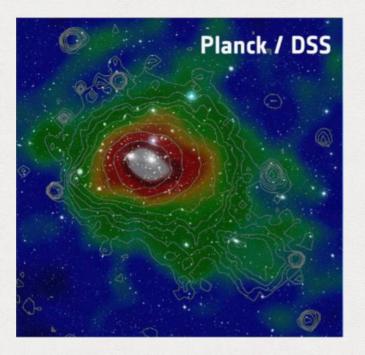
# Syllabus

- Background and motivation
- An Introduction to Artificial Neural Network (ANN)
- Estimating galaxy cluster masses with Convolutional Neural Network (CNN)
- An attempt to interpret the CNN
- Summary

## **Background and motivation**

# **Galaxy clusters**

- The largest gravitationally-bound system
- Made up of dark matter halos, galaxies (1%), intergalactic gas (7-13%)



tSZ image

X-ray image

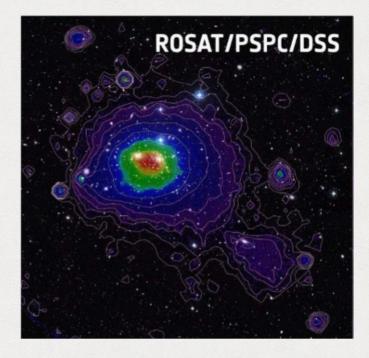
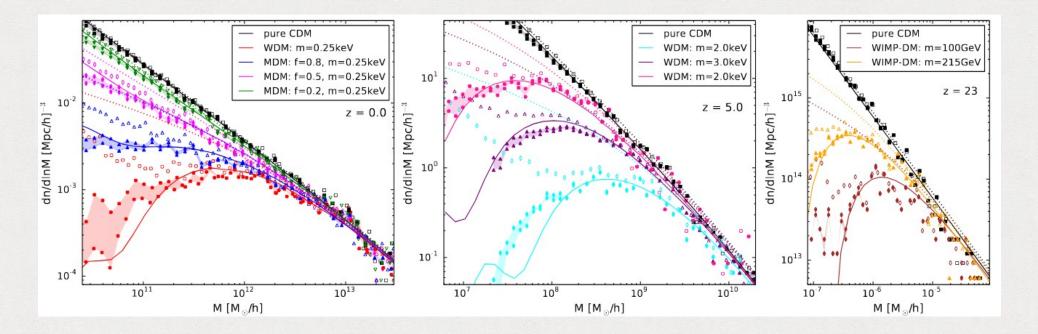


Image credits: ESA / LFI and HFI Consortia (Planck image); MPI(ROSAT image); NASA/ESA/DSS2 (visible image).

## **Cluster masses**

Halo mass function: the number density of dark matter halos per mass interval.

- tells us how dark halos form and evolve  $\rightarrow$  depends both on the nature of DM and our Universe!



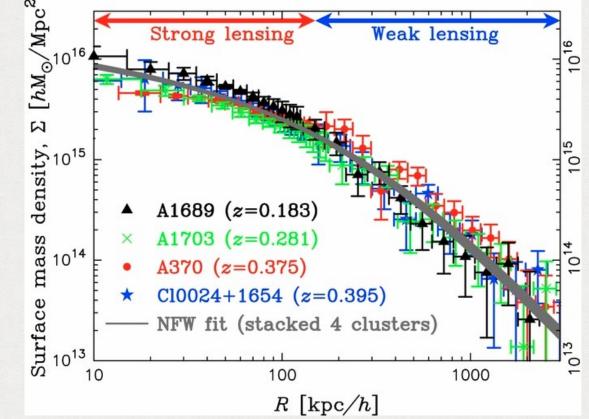
Halo mass function with different DM models. (Schneider, 2014)

#### Traditional mass estimation methods

Traditional estimation of cluster mass: profile fittings

$$\rho(r) = \frac{\rho_0}{\frac{r}{R_s} \left(1 + \frac{r}{R_s}\right)^2}$$
$$M = \int^{R_{\text{max}}} 4\pi r^2 \rho(r) dr$$

 $J_0$ 



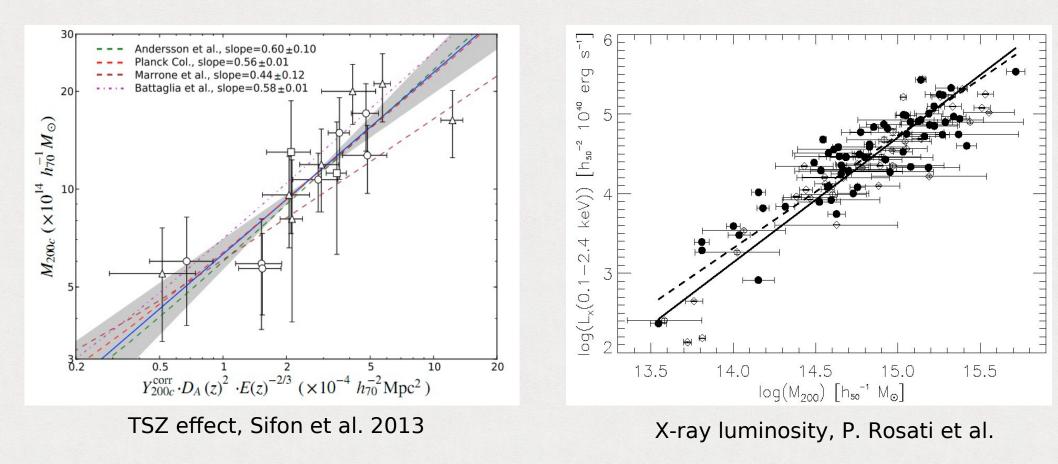
Limitations: -S/N not enough to measure profile for single cluster -Substructure information lost!

(Postman et al. 2012)

#### Traditional mass estimation methods

#### Traditional estimation of cluster mass: self-similar scale relation

 $M \propto L^{\alpha}$ 



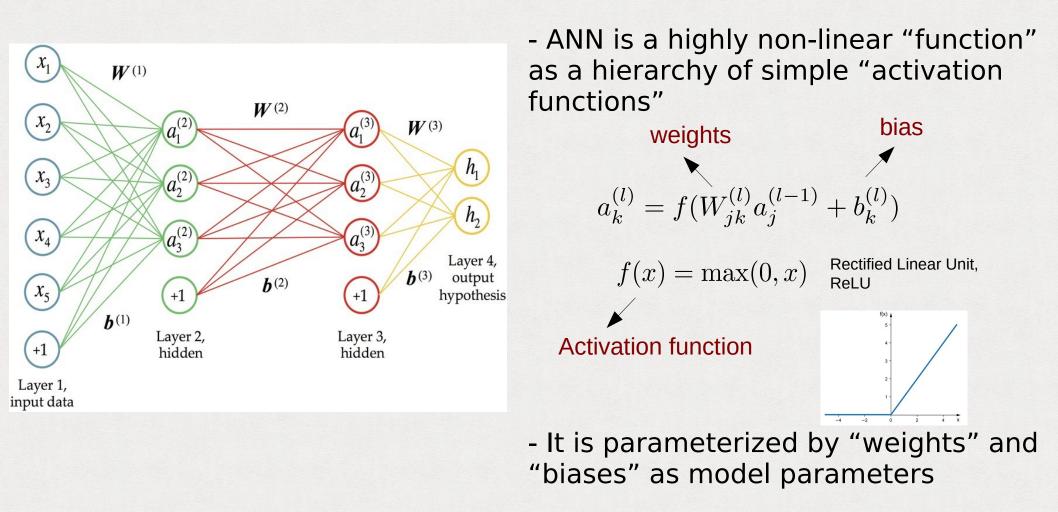
Limitation: bias; no structure information

# Can we estimate galaxy cluster mass directly from their 2-D images?

# A promising tool: convolutional neural network

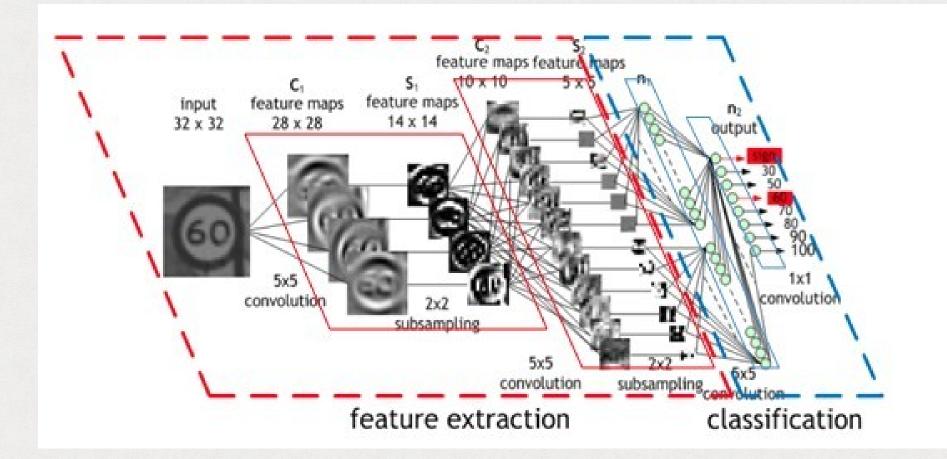
An Introduction to Artificial Neural Network (ANN)

#### **ABC of Artificial Neural Network**



- Training an ANN is to optimize the weights and biases so that the output matches the label of training data (minimizing 'loss function')

#### **Convolutional Neural Network**

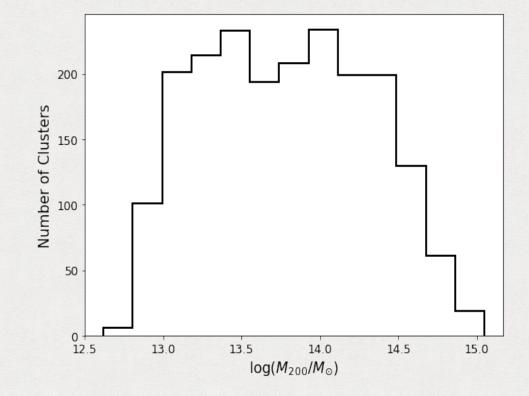


https://www.cs.ryerson.ca/~aharley/vis/conv/flat.html

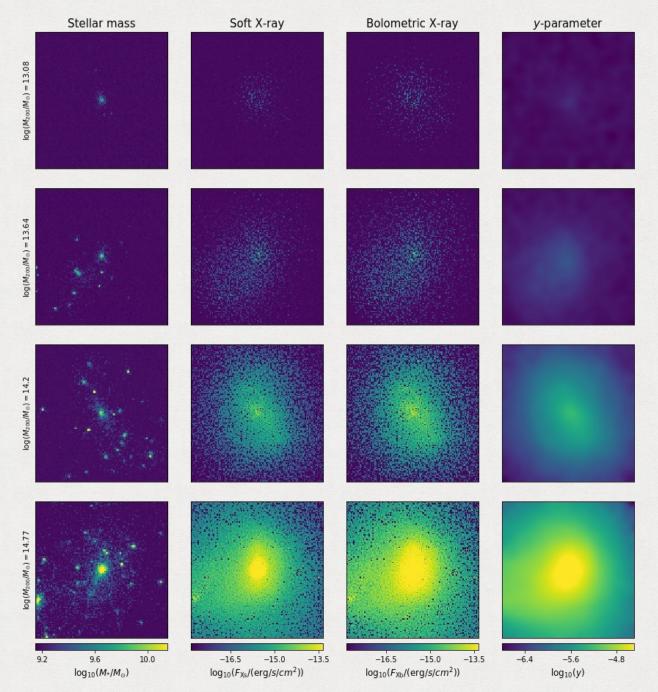
Estimating galaxy cluster masses with Convolutional Neural Network (CNN)

#### Data overview

- Data: galaxy clusters from BAHAMAS simulation with known mass  $M_{200}$
- Stellar mass; soft and bolometric X-ray flux; SZ y-parameter images are derived
- Cluster Redshift uniformly distributed within 0.03~0.07 (no evolution)

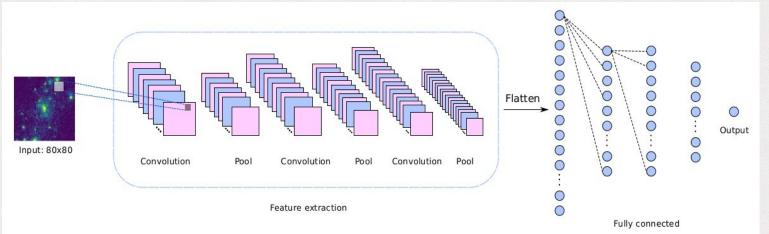


- Image pixelisation: 120 pix x 120 pix corresponding to 20' x 20' in the sky
- Interlope included; Gaussian random noise added; smoothed

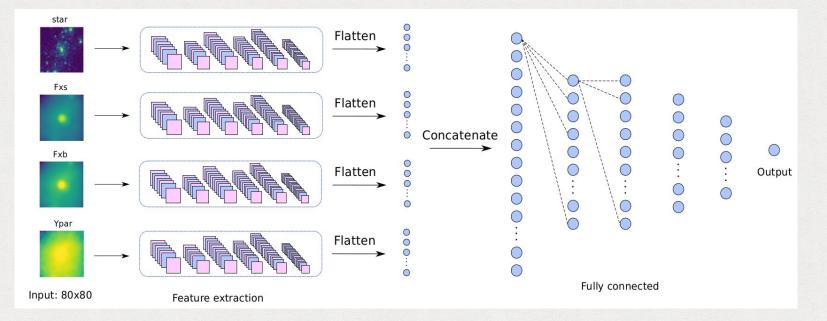


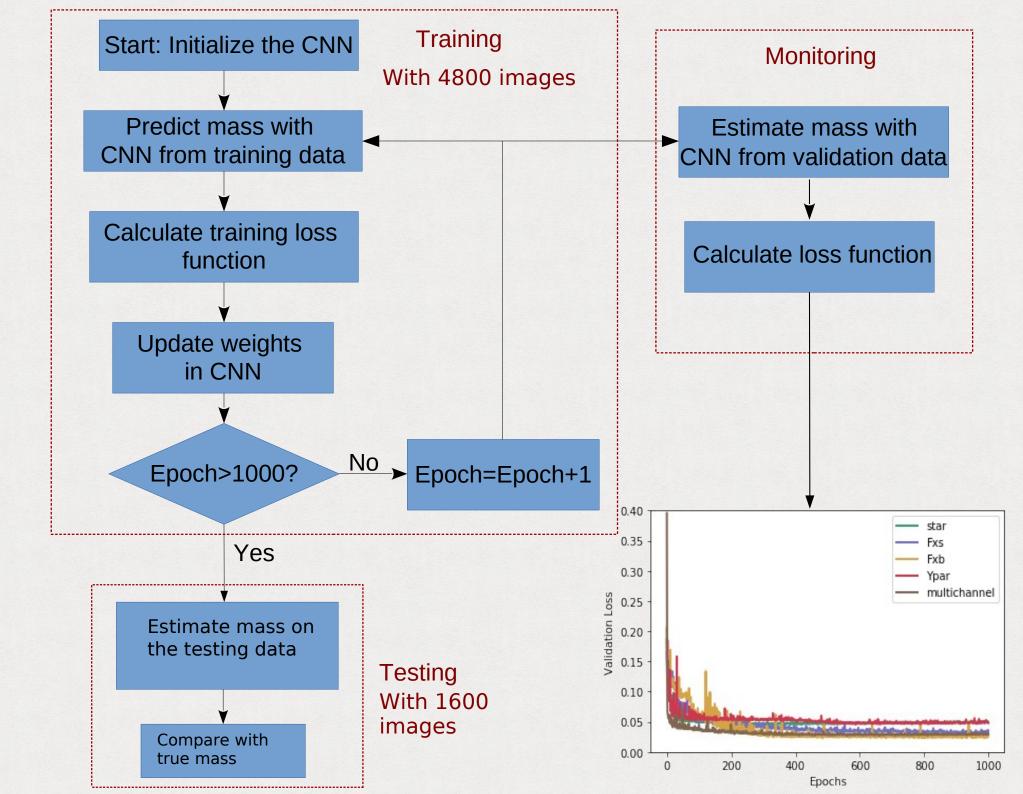
#### **Convolutional Neural Network: Architecture**

Single Channel (x4)

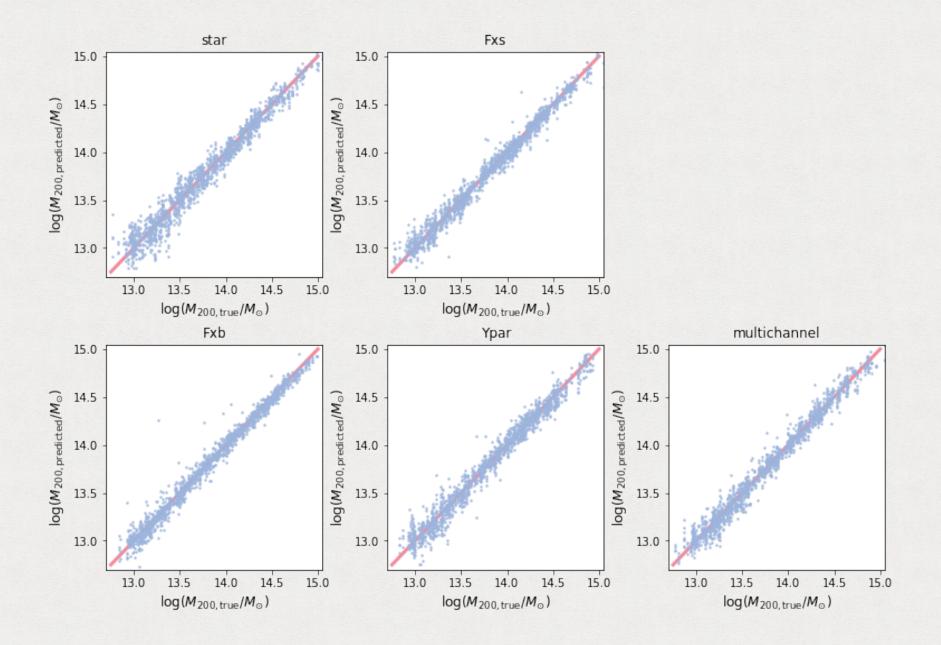


Multi-Channel

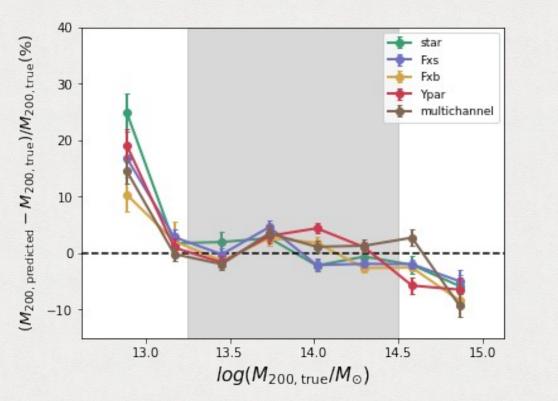




#### **Mass Prediction**

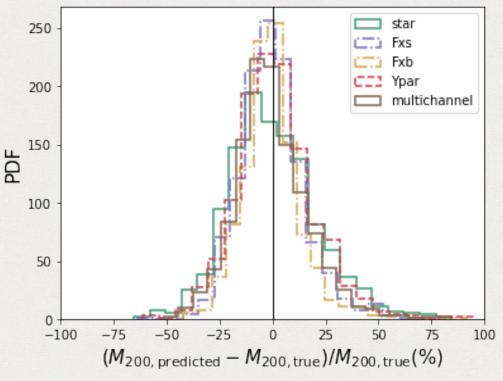


#### Mass Bias



| Dataset      | $\left<\log rac{M_{\mathrm{predict}}}{M_{\mathrm{true}}} \right>$ | $\left<\frac{M_{\rm predict}}{M_{\rm true}}\right>-1(\%)$ | $\langle RMS \rangle$ |
|--------------|--------------------------------------------------------------------|-----------------------------------------------------------|-----------------------|
| star         | $-0.01 \pm 0.003$                                                  | $-0.516 \pm 0.621$                                        | 19.028                |
| Fxs          | $-0.007 \pm 0.002$                                                 | $-0.349 \pm 0.517$                                        | 16.49                 |
| Fxb          | $-0.004 \pm 0.002$                                                 | $0.094 \pm 0.524$                                         | 16.036                |
| Ypar         | $0.002 \pm 0.002$                                                  | $1.814 \pm 0.559$                                         | 17.662                |
| multichannel | -0.001±0.002                                                       | $1.075 \pm 0.575$                                         | 17.693                |

Table 2. The mean mass bias  $(\Delta M \equiv M_{\text{pred}} - M_{\text{true}})$  and scatter obtained from the test set for  $13.25 < \log(M_{200,\text{true}}/M_{\odot}) < 14.5$ .



- Another machine learning estimation: 7% scatter (Armitage et al. 2019, no observational effect added)
- NFW profile fitting with same set of clusters: 6.4 +- 0.3 % (Hensel et al. 2016 no observational effect added)
- X ray observation: 30% scatter (Zhang et al. 2008);
- tSZ observation: 24% scatter (Bleem et al. 2015)
- Weak lensing: 20 % (Hoekstra et al. 2015)

## An attempt to interpret the CNN

#### An Attempt to Interpret our CNN

Why?

Because we are astrophysicists. We care not only about the results, but also the underlying physics.

-Try to find the features that 'trigger' the neural network make measurements.

### An Attempt to Interpret our CNN

• Try to understand which parts of the image that are important for the CNN to make prediction.

Brushing teeth

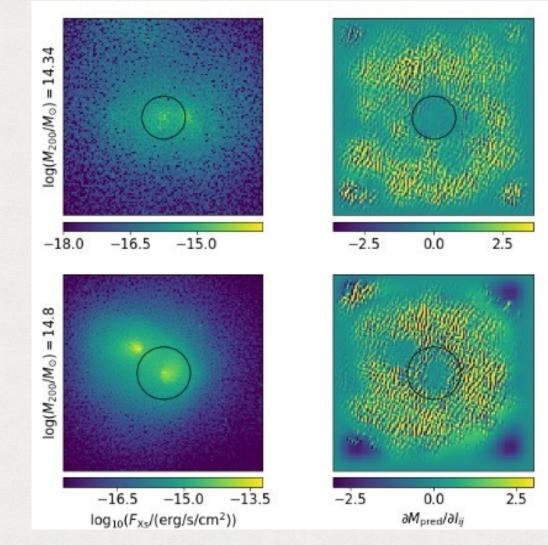
Cutting trees



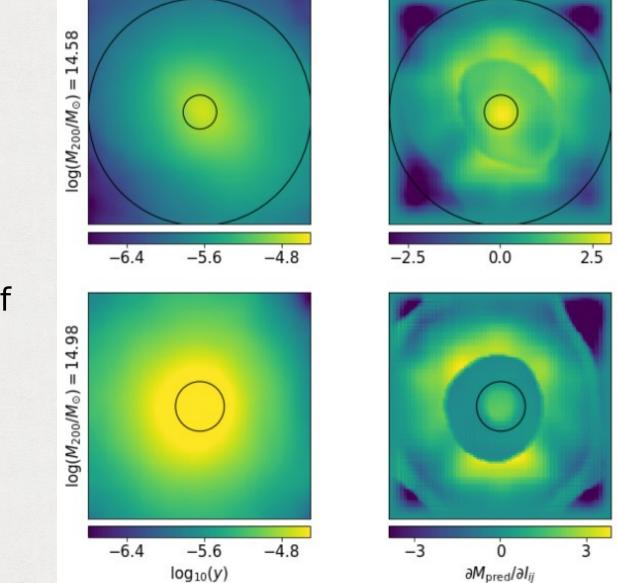
#### Soft X-ray flux

The neural network "sees" the substructure and excludes central regions when estimate mass

consistent with the observational fact that central region is less correlated with cluster mass due to cooling and feedback of central galaxy. (Mantz et al. 2018; Maughan 2007)



#### Ypar



#### The neural network 'sketches' the outline of the clusters.

## Summary

- Convolutional neural network can estimate cluster mass from images to a high accuracy
- Possible questions of interest: training separately with different cluster types? Adding cluster evolution?
- Possible improvements: wider mass range; more realistic simulations; more realistic systematics, etc
- Outline shape of clusters is taken as relevant to mass estimation (rather than central signal)