Seeing the trees through the forest: star formation history with CIB cross-correlations

Ziang Yan

German Centre for Cosmological Lensing

Background: star formation

How do stars form?

https://kids.frontiersin.org/articles/10.3389/frym.2019.00092

What can we learn from star formation?

Star and galaxy scales:

Copyright © 2005 Pearson Prentice Hall, Inc.

AGN, SN feedback Ha flux $(10^{-18} \text{ erg/s/cm}^2)$ $\int_{0}^{10} \int_{0}^{10} \int_{0}^{10$ Galaxy evolution

(https://universe-review.ca/F05-galaxy.htm)

(Sun et al. 2020)

(Shin et al. 2019)

What can we learn from star formation?

Cosmic scales:

Copyright: ESA - C. Carreau

Cosmic star formation history: an overview

(Madau & Dickinson 2014)

From light to SFR: multi-wavelength studies

From light to SFR: multi-wavelength studies

Potential limitation: selection bias? Incompleteness?

Background: the cosmic infrared background

Infrared emission from star-forming regions

• Dust is heated up by new stars to a temperature of ~30 K, and emits infrared emission

Intense star formation in the Westerhout 43 region. Credit: ESA/Herschel/PACS, SPIRE/Hi-GAL Project.

The Cosmic Infrared Background

• What is the CIB?

the cumulative infrared emission from all galaxies throughout cosmic history, first detected by COBE (Dwek et al. 1998)

• What generates the CIB?

The CIB is mainly generated by dust thermal emission from star-forming galaxies (e.g., Le Floc'h et al. 2005; Lagache et al. 2005; Viero et al.2009)

• What can we learn from the CIB?

Dust thermodynamics, star forming history, galaxy distribution...

Spectrum of cosmic backgrounds (Hill et al. 2018)

The infrared sky is dominated by the Milky Way

The Far Infrared Sky

The infrared sky seen by COBE (https://apod.nasa.gov/apod/ap000517.html)

How do we measure the CIB?

- **projecting IR flux** of all the galaxies detected by IR surveys (e.g *Spitzer* (Dole et al. 2006) and *Herschel* (Berta et al. 2010))

- · Clean from Galactic signal,
- high angular resolution,
- · limited sky coverage,
- **deprojecting Galactic IR signal** via internal linear composition (Planck Collaboration 2016)
 - · Large sky coverage
 - Biased (Maniyar et al. 2018, Lenz et al. 2019)
- **subtracting Galactic IR signal** with a template (Planck Collaboration 2014, Lenz et al. 2019)
 - \cdot Unbiased and complete
 - · may contain Galactic residue
 - · Limited sky coverage

Herschel-SPIRE HeLMS maps at 500 um (Cao et al. 2020)

Planck GNILC CIB map at 545 GHz (IRSA/IPAC)

CIB map at 545 GHz (Lenz et al. 2019)

CIB intensity

The projected CIB intensity map is an integral of IR emissions along the line of sight:

$$I_{\nu}(\boldsymbol{\theta}) = \int \mathrm{d}\chi a j_{(1+z)\nu}(\chi, \boldsymbol{\theta})$$

The CIB emission coefficient is connected to SFR density and spectral energy distribution (SED) of the dust (Maniyar et al. 2018):

$$j_{(1+z)\nu}(z) = \frac{\rho_{\rm SFR}(z)(1+z)S_{\rm eff}[(1+z)\nu, z]\chi^2}{K},$$

In the context of halo model, the SFR density is the average SFR over dark matter halos:

$$\rho_{\rm SFR}(z) = \int dM \frac{dn}{dM} SFR(M, z)$$

SFR-halo mass relation

SFR modeled as baryon accretion rate (BAR) times star-forming efficiency

 $SFR(M, z) = BAR(M, z)\eta(M, z)$

Generally speaking, η peaks at the halo mas ~ $10^{12} M_{\odot}$ (Bethemin et al. 2013)

Empirical model: lognormal (parametrized by peak SFR halo mass and width) (Maniyar, et al, 2021)

Ingredients of CIB model

- Spectral energy distribution (SED)
- Star formation rate (SFR)
- IR galaxy abundance: halo occupation distribution (HOD)

Star formation rate history from CIB power spectra (Maniyar et al. 2021)

Cosmic star formation history from KiDS x CIB cross-correlations

Arxiv: 2204.01649

Seeing the trees through the forest: star formation with CIB cross-correlations

Mattia/DESI collaboration)

statistics (DESI collaboration)

Cosmologists use large-scale structure statistics to study the Universe as a whole.

Seeing the trees through the forest: star formation with CIB cross-correlations

Cosmologists use large-scale structure statistics to study the Universe as a whole.

Can we use LSS statistics to study small scale physics, like star formation?

Tomographic CIB-galaxy cross-correlations

 Angular power spectra describes the correlation amplitudes on different angular scales.

$$C_{\ell}^{ab} = \frac{1}{2\ell+1} \sum_{m} a_{\ell m} b_{\ell m}^*$$

- Existing works:
 - CIB power spectra (Planck2013 XXX);
 - CIB x CMB lensing (Cao et al. 2020);
 - CIB x tSZ (Planck2015 XXIII)
- Advantages of CIB x galaxy:
 - galaxy position is relatively easier to measure
 - higher S/N
 - tracing SFR history better (through tomographic CC)
 - obtaining CC for different types of galaxies

CIB data

- CIB map (Lenz et al. 2019):
 - constructed from **Planck HFI sky maps**;
 - Galactic signal are removed with an HI template (threshold HI column density = 2.0e20 cm⁻²)
 - CIB intensity maps in 353, 545, 857 GHz
 - angular resolution: 5 arcmin
 - sky coverage ~25%

Galaxy data: KiDS gold sample

- Sky coverage: 1006 deg² (~2.2%, overlapped ~1.4%) (Kuijken et al. 2019)
- 5 tomographic bins, redshift extending to 1.5 (Wright et al. 2020)
- shape measured and calibrated for weak lensing cosmology (Heymans et al. 2021)

Analysis pipeline

Masks, beams, pixel window function are corrected

KiDS-CIB cross-correlation measurements

- Tools:

Measurement: NaMaster (Alonso et al., 2019)

Analysis: PYCCL (Chisari et al., 2018);

- beam and mode coupling corrected;
- logarithmic ℓ bin from 100 to 2000
- signal-to-noise: 43

Constrain the SFR with KiDS x CIB

measurements

Constraints of most-efficient halo mass

* The small errorbar of this constraint is due to An improper estimation of the covariance matrix

Forecast for future surveys

CFIS: Canada-France Imaging Survey

- sky coverage: 3500 deg^2;
- redshift range: similar as KiDS

LSST:

- sky coverage: 20000 deg^2
- redshift range: ~3

Forecast:

- CFIS can reach similar constaining power as CIB x KiDS + SFRD;

- Next generation surveys (including LSST, *Euclid*, and CSST) will improve the constraining a lot!

Other studies on CIB cross-correlations

SFR from other CIB cross-correlations

CIB x DELS, eBOSS galaxies (Jego+2022a)

CIB x shear (Jego+2022b)

SFR from other CIB cross-correlations

(Jego+2022b)

CIB-unWISE galaxy cross-correlation

(Yan et al., 2023, arxiv: 2310.10848)

Star formation Constraints from unWISE x CIB

Dust SED Constraints from unWISE x CIB

Conclusions and future prospects

- We can study galaxy-scale physics by LSS statistics;
- The CIB is **strongly correlated** with galaxy distribution;
- CIB-galaxy cross-correlation can be used to constrain cosmic star formation history and more;
- Consistencies between observations and models suggest that we are reaching a **converged picture** of IR-SFR related studies;
- Future galaxy surveys will provide more precise measurement of CIB cross-correlation, which might call for more sophisticated models (including feedback, quenching, galaxy type-dependent modeling, etc).

Thank you for listening!

Back-up slides

CIB intensity

The measured CIB intensity map (in MJy/sr) is an integral of IR emissions along the line of sight:

$$I_{\nu}(\boldsymbol{\theta}) = \int \mathrm{d}\chi a j_{(1+z)\nu}(\chi, \boldsymbol{\theta})$$

The IR emission coefficient at observed frequency is related to the IR luminosity via:

$$j_{(1+z)\nu}(z) = \int dL \frac{dn}{dL} \frac{L_{(1+z)\nu}(z)}{4\pi} = \int dM \frac{dn}{dM} \frac{L_{(1+z)\nu}(M,z)}{4\pi},$$

And the specific IR flux from a halo with mass M at redshift z is:

$$F_{\nu}(M,z) = \frac{L_{(1+z)\nu}(M,z)}{4\pi\chi^2(1+z)}$$

Angular cross-correlation model

A sky map of fluctuation of the 'u' field is its projected spatial fluctuation:

$u(\boldsymbol{\theta}) = \int \mathrm{d}\chi W^u(\boldsymbol{\chi}) \delta_u(\boldsymbol{\theta}, \boldsymbol{z}(\boldsymbol{\chi}))$		
	Radial kernels:	Spatial fluctuations:
CIB intensity:	$W^{\rm CIB}(\chi) = \frac{1}{1 + z(\chi)}$	$j_{ u}(oldsymbol{ heta},z)$
Galaxy count:	$W^g(\chi) = \frac{H(\chi)}{c} n_g(z(\chi))$	$\delta_g(oldsymbol{ heta},z)$

Limber approximation (valid for ℓ >10):

$$C_{\ell}^{\mathrm{g}\nu} = \int \frac{\mathrm{d}\chi}{\chi^2} W^{\mathrm{g}}(\chi) W^{\mathrm{CIB}}(\chi) P_{\mathrm{g}\nu} \left(k = \frac{\ell + 1/2}{\chi}, z(\chi) \right)$$
$$\left\langle \tilde{\delta}_{\mathrm{g}}(\boldsymbol{k}, z) \tilde{j}_{\nu}(\boldsymbol{k}', z) \right\rangle = (2\pi)^3 P_{\mathrm{g}\nu}(k, z) \delta^3(|\boldsymbol{k} - \boldsymbol{k}'|)$$

CIB-SFR connections

The specific IR flux is the total IR luminosity times the spectral energy distribution (SED):

$$F_{\nu}(M, z) = L_{\rm IR}(M, z) S_{\rm eff}[(1+z)\nu, z],$$

The total IR luminosity is linked with the SFR via Kennicutt relation:

$$L_{\rm IR}(M,z) = {\rm SFR}(M,z)/K$$

Therefore, the IR emission coefficients can be modelled as:

$$j_{(1+z)\nu}(z) = \frac{\rho_{\rm SFR}(z)(1+z)S_{\rm eff}\left[(1+z)\nu, z\right]\chi^2}{K},$$

CIB models used in unWISE x CIB

- The S12 model (Shang et al. 2012)
 - SFR history: given by a power law of (1+z);
 - SED: graybody (normalization factor fixed by introducing SFRD(z=0))
- The M21 model (Maniyar et al. 2021)
 - SFR history: BAR (fixed) x star forming efficiency (lognormal)
 - SED: fixed from IR flux stacking (Bethermin et al. 2013, Bethermin et al. 2015)
- The Y23 model
 - SFR history: BAR (fixed) x star forming efficiency (lognormal)
 - SED: graybody (normalization factor fixed by introducing SFRD(z=0))

Halo model for CIB x galaxy

The 1- and 2-halo terms of galaxy-CIB power spectrum:

$$P_{\mathrm{g}\nu,\mathrm{1h}}(k) = \int_{0}^{\infty} \mathrm{d}M \frac{\mathrm{d}n}{\mathrm{d}M} \langle \tilde{p}_{\mathrm{g}}(k|M) \tilde{p}_{\nu}(k|M) \rangle$$
$$P_{\mathrm{g}\nu,\mathrm{2h}}(k) = \langle b_{\mathrm{g}} \rangle(k) \langle b_{\nu} \rangle(k) P^{\mathrm{lin}}(k)$$
$$\langle b_{\mathrm{g}/\nu} \rangle(k) \equiv \int_{0}^{\infty} \mathrm{d}M \frac{\mathrm{d}n}{\mathrm{d}M} b_{\mathrm{h}}(M) \langle \tilde{p}_{\mathrm{g}/\nu}(k|M) \rangle,$$

Cross-correlation of profiles in the 1-halo term

$$\langle p_g(k|M)p_\nu(k|M)\rangle = \frac{1}{4\pi} \langle N_s(M)\rangle \langle L_{\nu,s}(M)\rangle p_{\rm NFW}^2(k|M) + \langle N_{\rm c}(M)\rangle \langle L_{\nu,s}(M)\rangle p_{\rm NFW}(k|M) + \langle N_{\rm s}(M)\rangle \langle L_{\nu,\rm c}(M)\rangle p_{\rm NFW}(k|M).$$

The halo occupation distribution (HOD)

Central and satellite galaxy counts:

$$\langle N_{\rm c}(M) \rangle = \frac{1}{2} \left[1 + \operatorname{erf}\left(\frac{\ln\left(M/M_{\rm min}\right)}{\sigma_{\ln M}}\right) \right]$$

$$\langle N_{\rm s}(M) \rangle = N_{\rm c}(M) \Theta\left(M - M_0\right) \left(\frac{M - M_0}{M_1}\right)^{\alpha_{\rm s}},$$

SFR from central and satellite galaxies

$$SFR_{c}(M) = \langle N_{c}(M) \rangle \times SFR(M)$$
$$SFR_{s}(M) = \int d\ln m \left(\frac{dN_{sub}}{d\ln m}\right) SFR_{s}(m|M),$$

where $SFR_s(m|M) = \min \{SFR(m), m/M \times SFR(M)\}$.

Galaxy data: unWISE catalog

- Selected from the Wide Field Infrared Survey Explorer (WISE) satellite mission (Wright et al. 2010),

- Sky coverage: ~54% (overlapped region ~10%)
- 3 tomographic bins

Covariance Matrix (KiDS x CIB)

Covariance matrix includes Gaussian, non-Gaussian connected, and super sample covariance

Covariance Matrix (unWISE x CIB)

Systematics considered

- Cosmic magnification;
- Redshift distribution uncertainty;
- CIB color-correction factor;
- one to two halo transition region smoothing (with HMCODE 2020);

Constrain the SFR with unWISE x CIB

SFR history Constraints

SFR history Constraints from unWISE x CIB

S12, M21, and Y23 are three CIB models different in their SED and SFR parametrization inspired by previous studies

In this work, we assume a evolving $M_{\rm peak}$ in our model and find no significant redshift dependence.

SED constraints from unWISE x CIB

In the KiDS x CIB work, we fixed the dust SED as that measured from IR flux stacking (Bethermin et al. 2013)

In this project, we try to constrain the SED with unWISE x CIB by assuming a gray-body spectrum (Shang et al. 2012, Planck XXX, 2013)

$$\Theta_{\rm eff}(\nu',z) \propto \begin{cases} \nu'^{\beta} B_{\nu'}(T_{\rm d}) & \nu' < \nu'_{\rm 0} \\ \nu'^{-\gamma} & \nu' \geqslant \nu'_{\rm 0}, \end{cases}$$

Where $\nu' = \nu(1+z)$ is the rest-frame frequency; dust temperature is modeled as $T_d(z) = T_0(1+z)^{\alpha}$

The connection frequency ν'_0 ensures the smoothness of two spectra (much higher than the Planck HFI frequencies)

SED constraints from unWISE x CIB

The SED normalization parameter is completely degenerate with the SFR. We fix it by fixing the SFRD at z=0 given by a synthesis of multiwavelength studies (Madau & Dickinson 2014)

SED is constrained in agreement with IR flux stacking (Bethermin et al. 2013) at our frequency bands

Galaxy bias constraints from unWISE x CIB

Galaxy bias is derived from HOD parameters.

$$b_{\rm g}(z) = \frac{1}{\bar{n}_{\rm g}(z)} \int \mathrm{d}M \frac{\mathrm{d}n}{\mathrm{d}M} b_{\rm h}(M,z) \left[N_{\rm c}(M,z) + N_{\rm s}(M,z) \right],$$

Constrain the HOD with unWISE x CIB

3.5

3.5

4.0

4.0

